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Abstract. Regular expression (RegEx) matching has been widely used
in various networking and security applications. Despite much effort on
this important problem, it remains a fundamentally difficult problem.
DFA-based solutions can achieve high throughput, but require too much
memory to be executed in high speed SRAM. NFA-based solutions re-
quire small memory, but are too slow. In this paper, we propose Regex-
Filter, a prefiltering approach. The basic idea is to generate the RegEx
print of RegEx set and use it to prefilter out most unmatched items.
There are two key technical challenges: the generation of RegEx print
and the matching process of RegEx print. The generation of RegEx is
tricky as we need to tradeoff between two conflicting goals: filtering ef-
fectiveness, which means that we want the RegEx print to filter out as
many unmatched items as possible, and matching speed, which means
that we want the matching speed of the RegEx print as high as possible.
To address the first challenge, we propose some measurement tools for
RegEx complexity and filtering effectiveness, and use it to guide the gen-
eration of RegEx print. To address the second challenge, we propose a
fast RegEx print matching solution using Ternary Content Addressable
Memory. We implemented our approach and conducted experiments on
real world data sets. Our experimental results show that RegexFilter can
speedup the potential throughput of RegEx matching by 21.5 times and
20.3 times for RegEx sets of Snort and L7-Filter systems, at the cost of
less than 0.2 Mb TCAM chip.
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1 Introduction

Regular expressions (RegExes) have been widely used in a variety of network and
security applications, such as anti-virus scanners [1], network intrusion detection
and prevention systems [2], firewalls, traffic classification and monitoring [3]. In
intrusion detection and prevention systems, RegExes are used to specify attack
signatures. In traffic classification and monitoring, RegExes are used to spec-
ify the signature of application protocols, thus allowing the classification and
monitoring of network traffic based on application protocols. The widespread
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usage is because of the expressive power, simplicity and flexibility of RegExes in
specifying signatures.

The RegEx matching problem can be defined as follows: given a set R of
RegExes, at run time, for each incoming item i (e.g., packets), we want to get
RegEx set O(R, i) whose members are all matched by the item. RegEx matching,
as the core operation of many applications, needs to be done at high speed with
small memory. However, despite much work that has been done, this remains a
fundamentally difficult problem. As a set of RegExes can be formally represented
as a Deterministic Finite Automata (DFA) or Nondeterministic Finite Automata
(NFA), prior RegEx matching solutions often fall into two categories: DFA-based
and NFA-based. First, DFA-based solutions may achieve high speed because at
any time there is only one active state, but may require too much memory.
For applications running on networking devices such as intrusion detection and
prevention systems and application firewalls, RegEx matching needs to be done
in high speed SRAM, which has small capacity in terms of a few megabytes.
Second, NFA-based solutions require small memory, but cannot achieve high
speed because at any time there may be many active states [4].

In this paper, we propose RegexFilter, a prefiltering approach to RegEx
matching for network security systems. Given a RegEx set R, we want to con-
struct another RegEx set R′ so that any unmatched item of R′ is also an un-
matched item of R. An unmatched item of a RegEx set is an item that does
not match any RegEx in the set. Moreover, we want the matching efficiency of
R′ to be much higher than that of R; thus, we can use R′ as a prefilter proce-
dure of R: Given an item i, we first match it against R′ and get set O(R′, i), if
O(R′, i) is empty, then it for sure does not match any member in R and therefore
we can skip this item safely; otherwise O(R′, i) is not empty, then we continue
to match it against T (R,O(R′, i)), where O(R, i) ⊆ T (R,O(R′, i)) ⊆ R, and
T (R,O(R′, i)) can be obtained reversely from O(R′, i). Because most items are
unmatched items for network security systems [5] and the matching cost of R′

is much less than that of R, the overall throughput of this prefiltering approach
is much higher than directly matching against R. We call R′ the RegEx print of
R. According to the main idea, RegexFilter divides the RegEx matching process
into two stages: filtering stage and verifying stage. The filtering stage performs
high-speed RegEx print matching on each arriving item. If one RegEx print is
matched, the corresponding RegEx will be checked in the verifying stage.

There are two main technical challenges to implementing RegexFilter. The
first challenge is the construction of the RegEx print for a given RegEx set. On
one hand, we want the RegEx print to filter out as many unmatched items as
possible. On the other hand, we want the matching efficiency of the RegEx print
to be as high as possible. These two goals are unfortunately conflicting. With
the RegEx print being the original RegEx set, the RegEx print can filter out all
unmatched items, but the matching efficiency is the lowest. With the RegEx print
being empty, the matching efficiency of zero cost is the highest, but it cannot
filter out any unmatched item. We need to carefully tradeoff between these two
conflicting goals. The second challenge is the matching of items against RegEx
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prints. We want this process to be as fast as possible to achieve high overall
RegEx matching throughput.

To address the first challenge, we first propose a method to generate all possi-
ble RegEx prints for each RegEx in the given RegEx set. Second, we propose an
estimation method to quantitatively measure the filtering effectiveness and com-
plexity of RegEx prints. Third, we reduce the problem of selecting the RegEx
prints with high filtering effectiveness and low complexity among all candidate
RegEx prints of a RegEx to the classical 0-1 knapsack problem. In this paper, we
use dynamic programming to choose RegEx prints among all candidates with the
goal of maximizing filtering effectiveness while keep the complexity of a RegEx
print less than a predefined threshold.

To address the second challenge, we propose a Ternary Content Addressable
Memory (TCAM) based solution for RegEx print matching. As larger TCAMs
have lower lookup frequency, require more power, generate more heat, and also
have high hardware cost, we want to minimize the TCAM space required to
encode the RegEx print DFA. Unfortunately, as minimizing TCAM space is NP-
hard, we propose a heuristic method that uses the Quine-McCluskey algorithm
to reduce TCAM space.

We make three key contributions in this paper. First, we propose an efficient
method to generate RegEx prints. In particular, we propose some measurement
tools for RegEx complexity and filtering effectiveness, and then use the tools to
guide the generation of RegEx print. Second, we propose an efficient method of
implementing RegEx print matching based on TCAMs. Third, we implemented
our approach and conducted experiments on real-world RegEx sets and traffic
traces. Our experimental results show that RegexFilter can speedup the through-
put of RegEx matching by 21.5 times and 20.3 times for RegEx sets of Snort
and L7-Filter systems, at the cost of less than 0.2 Mb TCAM chip.

The rest of the paper is organized as follows. We review related work in Sec-
tion 2. In Sections 3 and 4 we explain the generation of RegEx prints and the
implementation of high-speed RegEx print matching in TCAM for RegexFil-
ter respectively. In Section 5, we present experimental results. Finally, We give
conclusions and future work in Section 6.

2 Related Work

As DFA is the preferred representation of RegEx matching, recent work has
focused on reducing the huge memory usage of DFA-based RegEx match-
ing [4,6,7,8,9,10,11]. However, they achieve memory reduction only for signa-
ture sets of simple or specific RegExes. None of them can achieve high-speed
RegEx matching for real-world signature sets that contain thousands of complex
RegExes. However, these solutions are orthogonal to our work as they focus on
improving RegEx matching in our verifying stage. Meiners et al. [12] propose a
well-designed TCAM-based RegEx matching solution that introduces three novel
techniques to reduce TCAM space and improve matching speed. The solution
cannot work on real-world signature sets directly as the composite DFAs are too
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big to be encoded in a TCAM chip. However, it can be used in our RegEx print
matching as the RegEx print DFA is small enough even for real-world RegEx
sets. In fact, we design a more effective solution, that goes a step further and
tackles the prefix problem in [12].

Several string-based prefiltering techniques have been developed to improve
the performance of RegEx matching [5,13,14,15,16]. To the best of our knowl-
edge, the most outstanding one is sigMatch [5]. The sigMatch technique organizes
a signature set into a (processor) cache-efficient q-gram index structure, called
the sigTree. For a given signature set, sigMatch requires that each signature
has at least one string of length b to construct its sigTree. For these signatures
that do not satisfy the requirement, sigMatch rewrites them into multiple sig-
natures that have at least one string of length b in enumerating idea. Then,
for each signature, sigMatch picks exactly one discriminative substring (without
any meta-characters of RegExes) of length b + β as its fingerprint. The first b
bytes of the substring map the signature to a sigTree node, and the next β bytes
following the b bytes in the substring are used to hash into the Bloom Filter at
that node using a “set” of hash functions. Linked lists are used in sigTree nodes
for short signatures that do not have a substring of length b+ β.

These string-based prefiltering techniques have three major drawbacks.
First, they suffer from the problem of member set explosion when they
are applied to RegExes with character subclasses. An example is RegEx
^[a-z][a-z0-9]{5,15} that matches user ID starting with an English alphabet
followed by some alphanumeric characters.

These techniques have to enumerate all possible strings represented by the
RegEx, the size of which is more than 2616. Obviously this step is time-consuming
and impracticable. Second, the fingerprints generated by these techniques are
strings, which do not include the positioning of RegExes. For example anchor ^
in the above RegEx, which indicates that successful matchings must start from
the beginning position of items. This inability leads to the problem that they may
have poor filtering effectiveness. Third, there needs to be one Bloom Filter for
each possible length of fingerprints [17]. The hardware cost can be prohibitive
if fingerprints have a large number of distinct lengths. RegexFilter addresses
these problems by generating short RegExes as fingerprints for each original
RegEx without enumerating its all possible strings, and performing RegEx print
matching with DFA representation in TCAM.

Ficara et al. [18] propose the first RegEx-based prefiltering solution that uses
sampling technique to accelerate RegEx matching. The main idea is to sample a
byte every θ bytes over packet payloads (θ is the sampling period). The sampled
payloads are then used to match with a proper sampled DFA constructed from
sampled RegExes. The method can process normal packets θ times faster at the
cost of false-positive alarms. However, sampling RegExes correctly sometimes
is very hard. Moreover, the sampled DFA may still experience state explosion .
For example, RegEx |ab.1024cd— is sampled into two RegExes |a.512c— and
|b.512d— given sampling period θ = 2, the sampled DFA constructed from the
two sampled RegExes has billions of states.

^[a-z][a-z0-9]{5,15}
^
|
|
|
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3 RegEx Print Generation

For a given RegEx, we first present a method to find all of its possible RegEx
prints in this section, and then we introduce an algorithm to selectively generate
good RegEx prints that satisfy our goal.

3.1 RegEx Print

Before presenting our work, we give some definitions to be used first. A RegEx
r is a string over symbol set Σ ∪ {ε, |, ·, ∗, (, )}, which is recursively defined as
the empty character ε; a character α ∈ Σ; and (r1), r1 · r2, r1|r2, and r1

∗, where
r1 and r2 are RegExes. It represents a set of strings without enumerating them
explicitly over alphabet Σ, which is defined recursively on the structure of r as
follows:

– if r=ε, S(r)={ε}, the empty string
– if r=α (α ∈ Σ), S(r)={α}, a single string of one character
– if r=(r1), S(r)=S(r1)
– if r=r1 ·r2, S(r)=S(r1) ·S(r2), where S(r1) ·S(r2) is the set of strings w such

that w=w1w2, with w1 ∈ S(r1) and w2 ∈ S(r2). The operator ‘·’ represents
the classical concatenation of strings

– if r=r1|r2, S(r)=S(r1)∪S(r2), the union of the two sets. The operator ‘|’ is
called union operator.

– if r=r1
∗, S(r)=S(r1)

∗=
⋃∞

i=0 S(r1)
i, where S0={ε} and Si=S · Si−1 for any

string set S. That is, the result is the set of strings formed by a concatenation
of zero or more strings represented by r1. The operator ‘∗’ is called star
operator.

In order to construct an automata (NFA or DFA) for RegExes, most of the
constructions use a binary tree representation as an intermediate form. The
leaves of the tree are labeled with the characters of alphabet Σ or the symbol
ε, and the internal nodes are labeled with the operators. The nodes that are
labeled with ‘|’ or ‘·’ have two children, while nodes labeled with ‘∗’ have only
one child. Prior work describe how to parse a RegEx to obtain its parse tree
recursively, in fact this conversion is reversible. Given a parse tree, its original
RegEx can be obtained recursively just like the parsing process. In our work, we
perform the generation of RegEx prints over the parse-tree representation for a
given RegEx.

Definition 1. Given a RegEx r, its Expression Size, denoted by ES(r), is the
number of strings represented by r, namely ES(r) = |S(r)|.
For the given RegEx r, how to calculate its ES value is an open question. One
simple method is to enumerate all the strings represented by r according to
the definition, and then count the size. However, it is very inefficient as men-
tioned above. In this paper, we propose a novel method that can calculate ES(r)
approximately, as shown in the following recursive way:
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– if r=ε, ES(r) = 1
– if r=α (α ∈ Σ), ES(r) = 1
– if r=(r1), ES(r) = ES(r1)
– if r=r1 · r2, ES(r) = ES(r1)× ES(r2) (We can infer that ES(r) = ES(r1)

n if
r=r1{n})

– if r=r1|r2, ES(r) = ES(r1) + ES(r2)
– if r=r1

∗, ES(r) =
∑∞

t=0 ES(r1)
t = ∞ (ES(r1) is an integer no less than 1)

The easiest cases are single characters and ε. For operators ‘·’, ‘|’ and ‘∗’, the
equations do not hold strictly, because there may be the same strings among all
the combinations. For example, RegEx a(b|ε)(b|ε)c represents a set of strings
{ac, abc, abbc} (because of ε · r = r · ε = r), its real expression size should be
3. According to our calculating method, we get ES(a(b|ε)(b|ε)c) = ES(a) ×
ES(b|ε)×ES(b|ε)×ES(c) = 1×2×2×1 = 4. Fortunately, our method produces
approximate ES values that are very close to the real values.

Similarly, we define the Expression Size of a RegEx set R = {r1, · · · , rn},
denoted by ES(R), as the number of strings represented by r1| · · · |rn. We can
infer that ES(R) =

∑n
i=1 ES(ri) according to our calculating method of ES.

Obviously, a RegEx set has larger or equal ES value than any of its RegEx
prints. Meanwhile, a RegEx set has higher complexity than any of its RegEx
prints, where the complexity is regarded as state size for DFA-based matching
solutions in this paper. Inspired by the insight, we argue that ES can be used
as a measurement tool to compare the complexity even for two totally different
RegEx sets. This speculation is reasonable intuitively: a RegEx set with larger ES
value represents more strings, and more strings consume more states when con-
structing Aho-Corasick complete automata (a special DFA for string matching).
A persuasive example is a string signature, such as r1=ACNS, and a RegEx signa-
ture that contains constrained repetitions of wildcards, such as r2=|AC.10NS—.
After calculating we know ES(r1) = 1 and ES(r2) = 25610, meanwhile the DFA
of r1 has 5 states and the DFA of r2 has more than one thousand states. An
important application of our ES tool is that it can be used to deal with state
explosion pertinently by combining with previous work [11,10,19,9]. Because we
can locate the accurate positions that will lead to state explosion quantitatively
by calculating ES, while previous work solve the problem qualitatively and em-
pirically.

A signature with better filtering effectiveness is matched with a lower prob-
ability. A string, which is a RegEx too, only represents itself. Moreover, the
length of a string is fixed. It is easy to prove that the matching probability of a
string is inverse to the size of alphabet Σ to the power of its length over random
inputs of infinite length. Some prefiltering work tend to generate longer strings
as fingerprints because they will be matched much less frequently than shorter
ones. However, it is hard to measure the matching probability of a RegEx, be-
cause a RegEx usually represents many strings of different lengths. Motivated
by the insight that shorter strings have much higher matching probability, we
speculate that the matching probability of a RegEx mainly depends on its Min-
imum Expression Length and its Shortest Expression Size, which are defined as
follows.

ACNS
|
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Definition 2. Given a RegEx r, the Minimum Expression Length of r, denoted
by L(r), is the number of characters in s, where s is the shortest string in set
S(r).

Unlike in the calculation of ES value, the same strings in S(r) do not change
L value for the given RegEx r. Thus, we can calculate L(r) accurately in the
following recursive way:

– if r=ε, L(r) = 0
– if r=α (α ∈ Σ), L(r) = 1
– if r=(r1), L(r) = L(r1)
– if r=r1 · r2, L(r) = L(r1) + L(r2)
– if r=r1|r2, L(r) = min(L(r1),L(r2))
– if r=r1

∗, L(r) = 0

Definition 3. Given a RegEx r, the Shortest Expression Size of r, denoted by
SES(r), is the number of strings of length L(r) in set S(r).

Similar to the calculation of ES, we can calculate SES approximately with the
following method:

– if r=ε, SES(r) = 1
– if r=α (α ∈ Σ), SES(r) = 1
– if r=(r1), SES(r) = SES(r1)
– if r=r1 · r2, SES(r) = SES(r1)× SES(r2)
– if r=r1|r2 :

• if L(r1) is bigger than L(r2), SES(r) = SES(r2)
• if L(r1) is smaller than L(r2), SES(r) = SES(r1)
• if L(r1) equals to L(r2), SES(r) = SES(r1) + SES(r2)

– if r=r1
∗, SES(r) = 1

Definition 4. The matching probability of a RegEx r, denoted by MP(r), is de-
fined as the ratio of SES(r) to SCS(r), where SCS(r) represents the total number
of strings of length L(r) over alphabet Σ.

Definition 5. A RegEx r is dividable if and only if it can be rewritten into the
form of r1 · r2, where r1 and r2 are RegExes, and S(r1) �= {ε}, S(r2) �= {ε}.
RegEx r is atomic if it is not dividable.

Lemma 1. Given a RegEx r = r1 · · · rn, where rt is atomic (1 ≤ t ≤ n). We
abbreviate RegEx r of this type as r = r[1,n] later. Then 1) r[i,j] (1 ≤ i ≤ j ≤ n)

is a RegEx print of r; 2) RegEx r has at most n(n+1)
2 RegEx prints.

Proof. 1) First, r[i,j] is obviously a RegEx. Second, it is a fingerprint, because
any input T matched by r will be matched by r[i,j]: T must contains one string
s in set S(r), while s is the concatenation of a string in set S(r[1,i−1]), a string
in set S(r[i,j]) and a string in set S(r[j+1,n]).

2) Since 1) is right, the proof of 2) is simple and trivial.
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3.2 RegEx Print Generation Algorithm

For a RegEx set R, we want to generate a set of RegEx prints that produces
a DFA with as few states as possible and prefilters as many items as possible.
However, comparing among all possible RegEx print sets is high-cost. In this
section, we present a novel algorithm that can achieve the goal with low cost by
pruning uncompetitive RegEx print sets. Our algorithm involves three stages:
selecting stage, refining stage and deciding stage, which are described below.

Selecting Stage. As compiling the RegEx print set into a composite DFA within
limited memory is a hard requirement, we try to limit the DFA state size, at the
time we want to bypass the time-consuming process of DFA construction. The
main idea is to select those RegEx prints whose ES values are no more than a
predefined expression size threshold β for each RegEx. Detailedly speaking, for
a given dividable RegEx r[1,n], RegEx print r[i,j] is selected in this stage if it
satisfies the following conditions: 1) ES(r[i,j]) ≤ β; 2) ES(r[s,t]) > β for s ≤ i
and t > j, or s < i and t ≥ j. We can easily prove that r[i,j] is also a RegEx
print of r[s,t].

Before describing our algorithm, we introduce a theorem first.

Theorem 1. For any dividable RegEx r = r1 · r2, where r1, r2 are RegExes, the
following two conditions hold: 1) ES(r) ≥ ES(r1), meanwhile MP(r) ≤ MP(r1).

Proof. According to the above calculation methods, we know that ES value is
not less than one meanwhile MP value is not more than one for any RegEx. Thus
ES(r2) ≥ 1, MP(r2) ≤ 1. Then we can infer that: 1) ES(r) = ES(r1)×ES(r2) ≥
ES(r1), moreover ES(r) = ES(r1) only when r2 represents the string set {ε}
or {α} ({α ∈ Σ}); 2) MP(r) = SES(r)

|Σ|L(r) = SES(r1)×SES(r2)

|Σ|L(r1)+L(r2) = MP(r1) ×MP(r2) ≤
MP(r1), moreover MP(r) = MP(r1) only when the shortest expressing string set
of r2 is its shortest complete string set.

Theorem 1 accords with our intuition: a RegEx requires more resource but has
better filtering effectiveness than any of its RegEx print. Our algorithm works re-
cursively in post-order traversal from the root node of the parse tree of r[1,n] to se-
lect RegEx prints. Figure 1 shows the selecting process of RegEx “a[bc]d.[bc]”
that has five atoms. Given β = 256, we begin the selecting stage from the first
atom in step 1, curr pointer keeps moving to the next atom if ES value of the
RegEx print between begin pointer and curr pointer is less than or equal to β.
When curr pointer arrives at the fourth atom “.”, condition 1 does not hold,
thus RegEx print a[bc]d is selected. Because we can infer that ES value of any
RegEx print that contains “a[bc]d.” is longer than 256 according to Theorem
1, we begin step 2 from the second atom. Although RegEx print [bc]d satisfies
the two conditions at the same time, it is included in the already selected RegEx
print “a[bc]d”. According to Theorem 1 we know that a[bc]d has higher MP

value than [bc]d, thus [bc]d is not selected. Step 3, 4 and 5 follow the same
idea to select RegEx prints.

For RegEx r[1,n], the ES value of a atom, supposing ri, may be larger than β.
Obviously, any RegEx print containing ri will not be selected. However, these

a[bc]d.[bc]
.
a[bc]d
a[bc]d.
[bc]d
a[bc]d
a[bc]d
[bc]d
[bc]d
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1 2 2 512
a [bc] d . [bc]

a[bc]d is selected
step1 [ ] [ ]

begin curr

2 2 512
[bc]d is not selectedt 2 a [bc] d . [bc]

begin curr

1 256 512

[bc]d is not selectedstep2

1 256 512
a [bc] d . [bc]

begin curr

d. is selectedstep3

256 512
a [bc] d . [bc]

begin curr

. is not selectedstep4

2
a [bc] d . [bc]

begin curr

[bc] is selectedstep5

begin curr

Fig. 1. Selecting RegEx prints for RegEx a[bc]d.[bc] with β = 256. In each step
atoms in blue indicate that they are covered by already selected RegEx prints, the
next selected RegEx print must contain at least one atom that is not in blue.

RegEx prints may have low MP value while all the remaining RegEx prints have
high MP value. To address this problem, we rewrite r into multiple RegExes
until no atom has ES value larger than β or no atom is in the form of the union
of RegExes. For instance, given β = 256, RegEx r =(tele|phone|AC.*NS)[^a]

has only one RegEx print [^a] whose MP value is close to 1. We can rewrite it
into two RegExes: r1 =(tele|phone)[^a], r2 =AC.*NS[^a], then we can select
RegEx prints with the same ES value and lowerMP value for rewritten RegExes.

Refining Stage. In this stage, we refine the RegEx prints selected in the last
stage in the following steps. Step 1, for each selected RegEx prints, the first
atom (the last atom) whose MP value equals 1 should be removed repeatedly.
For the example in Figure 1, the wildcard in “d.” introduces very limited fil-
tering effectiveness by requiring one random symbol after “d”. However it will
introduce much state in the RegEx print DFA. Thus, we need to remove the
wildcard. RegEx prints of the example become a[bc]d, d and [bc] now. Step
2, these RegEx prints, whose atoms are included by other RegEx prints, should
be deleted according to Theorem 1. For the above example, RegEx print d has
only one atom that is included by RegEx print a[bc]d. We should delete RegEx
print d because it is meaningless: at any time RegEx a[bc]d is matched means
d must be matched. One thing to notice that, RegEx print [bc] should not be
deleted if allowing one RegEx has more than one RegEx print (see in deciding
stage). Because its atoms are not included by a[bc]d. Step 3, RegEx prints
with positioning (or anchors) should be kept as many as possible. Because po-
sitioning add the limitation that these RegEx prints must be matched at the
special positions of items. As a result, they will not be matched frequently even
for these RegEx prints with highMP value. In our implementation, we regard the

(tele|phone|AC.*NS)[^a]
[^a]
(tele|phone)[^a]
AC.*NS[^a]
d.
d
a[bc]d
d
[bc]
d
a[bc]d
d
a[bc]d
d
[bc]
a[bc]d
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filtering effectiveness of ^ as a normal character to decrease MP value while not
increase ES value.

Deciding Stage. In this stage, we decide the final RegEx print for each RegEx
by limiting itsMP value no larger than a predefined matching probability thresh-
old η. Given a RegEx r = r[1,n], assuming it has k RegEx prints (p1, · · · , pk)
left after refining stage: if MP value of one RegEx print is smaller than η, we
removing the first atom (or the last atom) repeatedly in the RegEx print to
make its MP value larger than η, at the same time close to η as much as possi-
ble; if MP value of any one RegEx print is larger than η, then we use multiple
RegEx prints together for RegEx r to reduce the number of items that need to
be verified. Because if a RegEx has multiple RegEx prints, only when an item is
matched by these RegEx prints sequentially (the order depends on the position
of the first atom of these RegEx prints), the item will be verified. For RegEx
prints a[bc]d and [bc] in Figure 1, the former one matched does not imply
that the latter one must be matched in sequential matching order. One vivid
data item is abdea. How to choose the final RegEx prints is an open problem
at present. We want the sum of ES value of these final RegEx prints is smaller
than or equal to β and the product of MP value of these final RegEx prints is
as large as possible. Obviously this is a typical 0-1 knapsack problem. In this
paper, we achieve the goal using the classical dynamic programming solution for
0-1 knapsack problem.

4 Regex Print Matching

As the RegEx print set in RegexFilter can be compiled into a composite DFA
within limited memory, prior TCAM-based DFA matching solutions can be used
here directly for high-speed RegEx print matching. TCAM is a special type
of memory which takes input of data as key to look-up address. It has the
following three capacities: i) ternary states encoding: 0’s, 1’s, and *’s where
*’s stand for either 0 or 1, enabling one TCAM entry to encode multiple DFA
transitions; ii) parallel content lookup, enabling TCAM to complete lookups in
a single operation no matter the number of occupied TCAM entries; iii) first-
match semantic, making TCAM to return the index of the first address for the
content that the key matches.

Meiners et al. [12] propose a well-designed TCAM-based RegEx matching
solution, which uses three novel techniques to reduce TCAM space and im-
prove RegEx matching speed: transition sharing, table consolidation, and vari-
able striding. The main idea is to encode multiple DFA transitions into a TCAM
entry by the help of TCAM capacities. However, the character bundling algo-
rithm used to encode transitions inside each state in the work is designed for
TCAM-based packet classification applications, which produce prefix TCAM en-
tries: the predicate of each entry is a prefix bit string (e.g., 01**) where no 0
and 1 behind *. In fact, a ternary TCAM entry allows * to appear at any posi-
tions (e.g., 0**1), which means it misses the opportunity of encoding transitions
created by non-prefix entries.

^
a[bc]d
[bc]
abdea
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TCAM SRAM

Curr State Input Sym Dest State

S0

01*00111 S2

01*00**1 S1

01*00*1* S1

01*001** S1

******** S0

TCAM SRAM

Curr State Input Sym Dest State

S0

01*00111 S2

*****000 S0

01*00*** S1

******** S0

TCAM SRAM

Curr State Input Sym Dest State

S0

01000111 S2

01100111 S2

01000000 S0

01100000 S0

01000000 S1

01100000 S1

******** S0

(a) Transitions of State S0 (b) Character Bundling (c) Transition Logic Simplification (d) Optimal Encoding

[a-fA-F]
S0 S1

S2

[gG]

Fig. 2. Outgoing transitions of state S0 and their different encodings in TCAM

In this section we go a step further and tackle the prefix problem. For any
DFA state Si, it has 256 transitions (assuming alphabet Σ is ASCII), which
have the same current state and completely different 8-bit input symbols. Obvi-
ously encoding all the 256 transitions into TCAM entries can be regard as the
simplification of a logic function with 8-input 1-output, hereinafter referred to
as a transition logic function. However. the outputs of the transition logic func-
tion have |S| possible values, which is different from the classical logic function
that always have a logic value of either “0” or “1”. Using exhaustive searching
method can get the optimal solution, but its cost is higher than that of the
classical Quine-McCluskey algorithm.

To reduce the complexity we add a limitation of encoding the transitions
with the same output together: treating a destination state as value “1” of clas-
sical logic functions, and simplifying the transitions to the state with Quine-
McCluskey algorithm; then setting their destination states to irrelevant term
(any state is allowed), and encoding the remaining transitions. We give a de-
tailed description with the example of encoding the transitions in Figure 2 (a).
Current state S0 moves to state S1 if the input symbol is in character range
[a-fA-F], moves to state S2 along g and G, and moves to itself for the re-
maining input symbols. As long as the occupied TCAM entries are arranged
according to the encoding order of destination states, the capacity of first-match
semantic ensures the correctness of lookup results. Figure 2 (c) shows the result
with the encoding order S2 → S1 → S0, which occupies 5 TCAM entries, while
character bundling algorithm occupies 7 entries, as shown in Figure 2 (b). One
thing to notice is that the occupied TCAM entries of our encoding is relevant
to the encoding order.

In this paper, we do not address the encoding order problem by testing all
possible orders. We propose a near-optimal solution to the problem based on
the distribution of transitions with the same destination state: for each DFA
state, its 256 outgoing transitions moves to few destination states, furthermore
the distribution of these transitions is very uneven. This observation can be
verified by the statistical results over the whole state set averagely. Given a
state Si in state set S, assuming its 256 outgoing transitions move to Mi different
destination states, thereinto Nij transitions move to the j-th destination state
(1 ≤ j ≤ Mi, and Ni∗ is in descending order. If not, sorting them). Obviously,
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snort24

bro217

snort34

snort31

Fig. 3. The distribution of AT (j) for Bro217, Snort24, Snort31 and Snort34

∑j≤Mi

j=1 Nij = 256. For state set S, the number of different destination states per

state ADS is defined as
∑i<|S|

i=0 Mi

|S| , its average number of j-th most transitions

AT (j) is defined as
∑i<|S|

i=0 Nij

|S| .

Taking RegEx sets bro217, snort24, snort31 and snort34 (widely used in prior
experiments) as examples, the corresponding DFAs has 36.8, 14.4, 11.6 and 12.3
different destination states in average. The distribution of AT (j) for the DFAs
is shown in Figure 3: the transitions to the most destination state (AT (0)) ac-
count for 90% proportions; the transitions to other destination states roughly
equal, and the value is no more than 2 in most case. Therefore, a preferable
encoding order of is determined heuristically by the number of the transitions
to the same destination state. Because when the number is one or two, encoding
them will consume the same TCAM entries regardless of the order. Nevertheless,
encoding them first can improve subsequent results. In Figure 2 (c), encoding
the transitions to state S0 only consumes one TCAM entries.

An important thing to note is that the heuristic order does not guarantee to
minimize the transition logic function. The optimal encoding is shown in Figure 2
(d), which encodes partial transitions to state S0 first. This change makes one
TCAM entry enough to encode all the transitions to state S1.

5 Experimental Results

In this section, we first give a brief description of our experimental setup. Then
we evaluate RegexFilter on the metrics of memory consumption and matching
performance. At last we show how RegexFilter changes as the change of expres-
sion size threshold β and matching probability threshold η.

5.1 Experimental Setup

In this paper, we evaluate RegexFilter on RegEx sets extracted from two real-
world systems, namely L7-Filter [3] and Snort [2]. L7-Filter is a popular open-
source application layer traffic classifier for Linux. It re-assembles the payload
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Table 1. Comparison of state size among SinstrFilter, MulstrFilter and RegexFilter

RegEx # of RegExes # of DFA states / # of RegExes unable to handle

sets original rewritten SinstrFilter MulstrFilter RegexFilter

backdoor 158 161 1452 / 0 2128 / 0 2302 / 0

l7filter 107 166 1317 / 8 1541 / 8 2847 / 0

content of a flow and identifies its application level protocol through RegEx
matching. The latest version of L7-Filter has 112 RegExes for traffic classifica-
tion. In this paper, we remove five RegExes that are overmatched, and select
the remaining ones to constitute our experimental RegEx set. Snort is a famous
open-source intrusion detection system, which can be configured to perform pro-
tocol analysis, content inspecting over online traffic to detect a variety of worms,
attacks and probes. We consider all the RegExes in backdoor.rules file of Snort
systems. In Both L7-Filter and Snort systems, each RegEx is compiled into one
automaton; at run time all automatons are used to match each incoming item
sequentially.

In this paper, we compare RegexFilter with SinstrFilter and MulstrFilter.
SinstrFilter chooses a single string that is longest as the fingerprint for each
RegEx while MulstrFilter uses all the strings as fingerprints. All the three filters
can work in two modes. One is item-filter mode, which matches an item with all
RegExes of R in verifying stage, if the item passes through filtering stage. The
other is pair-filter mode that matches an item with RegEx set T (R,O(R′, i))
in verifying stage, T (R,O(R′, i)) contains all the RegExes that match the item
successfully as described in section 1.

5.2 Experimental Evaluation

In our evaluation, we use threshold log2(β) = 16 and − log256(η) = 6 to generate
RegEx print for RegexFilter. As shown in Table 1, RegexFilter can construct a
small Regex print DFA with less than three thousand states for each RegEx set.
On the contrary, both backdoor set and l7filter set produce a composite DFA
with more than one million states. One thing to notice is that it is impossi-
ble to extract any strings for 8 RegExes of l7filter set. One example is RegEx
^[a-z][a-z0-9 -_]+, which is used to classify Finger traffic. Both SinstrFilter
and MulstrFilter have to experience the step of enumerating all possible strings
represented by these RegExes. In our experiment, SinstrFilter and MulstrFilter
do not generate fingerprints for these eight RegExes because of the high cost of
enumeration.

In this paper, we estimate the throughput of TCAM-based fingerprint match-
ing using Agrawal and Sherwood’s TCAM model, which makes the assumption
that each TCAM chip is manufactured with a 0.18 µm process. Table 2 shows
the results of TCAM-based fingerprint matching of SinstrFilter, MulstrFilter

^[a-z][a-z0-9
-_]+
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Table 2. TCAM size and throughput for RegEx print DFAs

Filters backdoor set l7filter set

TCAM size TPS Throughput TCAM size TPS Throughput

SinstrFilter 0.050 Mb 1.007 7.27 Gbps 0.046 Mb 1.018 7.27 Gbps

MulstrFilter 0.073 Mb 1.003 7.27 Gbps 0.054 Mb 1.015 7.27 Gbps

RegexFilter 0.15 Mb 1.03 5.44 Gbps 0.17 Mb 1.61 5.44 Gbps

and RegexFilter on TCAM size and throughput for backdoor and l7filter sets 1.
TCAM size is the TCAM memory required to encode the corresponding DFAs.
We calculate its value by multiplying the number of entries by the TCAM width.
For all the fingerprint DFAs, we need at most 15 state ID bits, thus TCAM width
36 is enough to store the lookup key. TPS means TCAM entries Per State, which
is calculated by dividing the number of TCAM entries required by the number
of states. DFA engine takes fixed stride over inputs with one character each
transition, the throughput is estimated by the number of TCAM lookups that
can be performed in a second for a given number of TCAM entries by 8 bits.

We can draw the following conclusions from Table 2. First, our encoding can
reduce TCAM memory required sharply, whose maximum value is less than 0.2
Mb for all the fingerprint DFAs. Second, the TPS value is far less than 256, pre-
cisely close to 1, which means that our encoding is possible to encode a DFA with
more than one millon states into a 72 Mb TCAM. Consequently, it makes Regex-
Filter to work on a set of thousands of RegExes. Third, TCAM-based matching
can achieve high throughput, the value is over 5 Gbps for all the fingerprint
DFAs. Fourth, SinstrFilter and MulstrFilter are superior to RegexFilter on the
performance of fingerprint matching. The primary reason is that their fingerprint
DFAs have less states and occupies less TCAM entries than that of RegexFilter.

A key criterion to measure filtering effectiveness is verifying rate, which is
defined as the percentage of matches performed in verifying stage when with
filtering stage among the total number of matches performed when without
filtering stage. We make a comparison over a real traffic trace captured in 2010
from a backbone network. The result is shown in Figure 4. The percentages of
items (each item is a flow here) that are matched by backdoor set and l7filter set
are 10.4% and 91.4%. The malicious ratio on the normal traffic for backdoor set
is higher than that in real Snort system, the primary reason may be we skip the
packet classification step before RegEx matching in Snort. Although more than
90% items pass through filtering stage for l7filter, verifying rate is still very small
in pair-filter mode. The result confirms our assumption that an item is usually
matched by limited RegExes. Our experiment presents RegexFilter shows the
minimum verifying rate, and recalls all matched pairs of items and RegExes.

1 Our implementation first removes transitions redundancy among state using shadow
encoding technology in [12], and then encoding each state’s remaining labeled tran-
sitions with transition logic simplification method instead of character bundling.
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Fig. 4. Comparison among SinstrFilter, MulstrFilter and RegexFilter on verifying rate
over a real traffic

After knowing the performance of TCAM-based fingerprint matching and ver-
ifying rate, we can estimate the potential throughput by determining the time
required to process a byte as the sum of the time required by TCAM-based fin-
gerprint matching and the expected time required by verifying stage to process
a byte under the verifying rate. In pair-filter mode, RegexFilter can improve
the throughput by 21.5 times for backdoor set and by 20.3 times for l7filter set.
Our RegexFilter achieves the potential throughput as 1.2 times and 1.7 times
high on backdoor and l7filter set comparing with TCAM-based SinstrFilter, and
achieves the potential throughput as 0.79 times and 1.3 times high comparing
with TCAM-based MulstrFilter. One thing to notice is that MulstrFilter intro-
duces additional time to validate whether all fingerprints of the same RegEx are
matched in sequence, which is not included in the above estimation.

5.3 Effect of Expression Size Threshold

In this section we evaluate the effect of threshold β for RegexFilter. As β is
used to bound the number of strings represented by a RegEx print, state size of
RegEx print DFA is expected to grow along with the increase of β.

Figure 5 shows the change of RegEx print DFA state size for different β on
our experimental RegEx sets. All RegEx prints are generated under threshold
− log256(η) = 6. From Figure 5 we can find that backdoor set experiences almost
the same state size of for different β. Because each RegEx in backdoor set has
string fingerprints. As for l7filter set, state size of RegEx print DFA initially
decreases rapidly as the increase of β, and then increases after a certain limit.
This behavior is because some RegExes do not have any RegEx print for small β,
i.e. RegEx ^[\x14\x1c\$].{6,15}[\xc6-\xff] used to classify “network time
protocol” traffic in L7-Filter. We add these RegExes into the set of RegEx prints
to ensure that no false-negative matches occur, as a result the fingerprint DFAs
experience state explosion for small β. As β increases further, RegexFilter can
generate RegEx prints for these RegExes. Therefore RegEx print DFA becomes
compact suddenly, and then increases in the number of states stably.
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Fig. 5. State size of fingerprint DFAs as
a function of log2(β)
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Fig. 6. Verifying rate in item-filter mode
as a function of log2(β)

Figure 6 shows that how verifying rate of RegexFilter in item-filter mode
varies along with the increase of β. The input trace is a synthetic file generated
by regex-tool [20] with pm = 0.15. Owing to the same reason as described in the
last paragraph, RegexFilter presents fluctuant curve on verifying rate for l7filter
set. In one word, verifying rate decreases as the increase of β in the whole.

5.4 Effect of Matching Probability Threshold

Threshold η, which is used to bound the maximum matching probability of each
RegEx print, is the other parameter that can impact the generation of RegEx
prints in RegexFilter. In our evaluation, we keep log2(β) fixed at 16 because
backdoor set and l7filter set presents normal behavior on state size and filtering
rate for log2(β) ≥ 14. It gives a good trade-off when log2(β) is 16.

Figure 7 and Figure 8 show the effect of threshold η on state size of RegEx
print DFA and verifying rate respectively. As can be seen in Figure 7, decreasing
η, namely increasing − log256(η), will increase the state size of RegEx print
DFAs, as more symbols will be included for higher η. The state size of RegEx
print DFA experience sublinear growth for backdoor set, while it grows slowly

2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

-log2 5 6 (η )

l7filter
backdoor

Fig. 7. State size of fingerprint DFAs as
a function of − log256(η)
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Fig. 8. Verifying rate in item-filter mode
as a function of − log256(η)
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and flatly for l7filter set. The primary reason is that little RegExes in l7filter107
set have the RegEx print whose MP value is lower than 256−8, on the contrary
some RegExes of backdoor set have long string fingerprints. We expect that the
growth rate of RegEx print DFA state size will slow down gradually and become
zero after a certain value.

From Figure 8, we find that increasing − log256(η) does not improve verify-
ing rate any more after a certain value, which are 5 and 3 for the two RegEx
sets respectively. This indicates that RegExes in real-world systems are distinct
enough with − log256(η) = 6.

6 Conclusions

In this paper, we present RegexFilter, a high-speed and memory-efficient tech-
nique to improve the throughput of RegEx matching for network and security
applications. Our solution leverage the insights that an item is usually matched
by limited RegExes, and most items do not match any member in real-word
RegEx sets. Thus we try to speedup RegEx matching by quickly finding these
RegExes that may match each arriving item as little as possible. First, we de-
velop a novel method that generate RegEx prints to filter a large number of
unmatched items with little memory requirement. The method utilizes some
new tools to guide the generation of RegEx prints without constructing DFAs.
Second, we propose an non-prefix encoding algorithm to minimize the TCAM
entries required for TCAM-based RegEx matching. As a result, RegexFilter can
perform RegEx print matching quickly.

We evaluate our work on some reasonable metrics and compare it with other
two solutions. The preliminary experimental results show that our TCAM-based
RegexFilter is suitable to accomplish the filtering task in high-speed for sets of
large-scale and complex RegExes. As part of future work, we will beef our work
and explore its extension for multi-cores.
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